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Abstract. Rascal is a meta programming language focused on the implemen-
tation of domain-specific languages and on the rapid construction of tools for
software analysis and software transformation. In this paper we focus on the use
of Rascal for software analysis. We illustrate a range of scenarios for building new
software analysis tools through a number of examples, including one showing
integration with an existing Maude-based analysis. We then focus on ongoing work
on alias analysis and type inference for PHP, showing how Rascal is being used,
and sketching a hypothetical solution in Maude. We conclude with a high-level
discussion on the commonalities and differences between Rascal and Maude when
applied to program analysis.

1 Introduction

Rascal [32l33] is a meta programming language focused on the implementation
of domain-specific languages and on the rapid construction of tools for software
analysis and software transformation. Rascal is the successor to both ASF [4] and
ASF+SDF [48/46], providing features for defining grammars, parsing programs, analyz-
ing program code, generating new programs, interacting with external tools (through
Java), and visualizing the results of these operations.

In this paper we focus on software analysis, exploring the design space of Rascal
analysis solutions. We begin this in Section [2] by providing a brief introduction to
Rascal, focusing on the design of the language and how this design is realized by
Rascal’s language features. We also show several small examples of Rascal code. We
continue this in Section[3] presenting several analyses developed using Rascal: a hybrid
Rascal/Maude [[11]] analysis for finding type and units of measurement errors; a Rascal
analysis of Java code that uses information extracted from the Eclipse Java Development
Tools; and the Rascal name resolver and type checker, which works as part of the Rascal
development environment and is implemented completely in Rascal. These examples
highlight different solution scenarios in the design space, including (at one extreme)
using Rascal as a coordination language for existing analysis tools and (at the other)
building an analysis solely in Rascal.

In Section 4| we then describe ongoing work, written mostly in Rascal but with some
integration of external tools, on defining a set of analyses for the PHP language. We
focus here on two specific analyses: alias analysis and type inference. We start this
description by setting out a number of tasks that need to be performed for these analyses
— for instance, parsing the source program, or defining an internal representation for
storing analysis facts. We then show how Rascal is used to provide support for each of
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Fig. 1. Meta-programming domain: 3 layers of software representation with transitions.

these tasks. Another possibility for defining these analyses would be to use rewriting
logic [34]], specifically techniques developed as part of the rewriting logic semantics [35]]
project. Therefore, to end the section, we also show how these analysis tasks could be
supported with a rewriting logic semantics-based analysis in Maude.

This paper touches on several areas with extensive related work. Section|[5]focuses on
existing research related directly to Rascal, the analysis of PHP programs, and program
analysis using Maude. Section [6]then offers observations and discussion, highlighting
what we believe to be the advantages and disadvantages of Rascal and Maude for
developing program analysis tools.

2 Rascal

Rascal was designed to cover the entire domain of meta-programming, shown pictorially
in Figure [T} The language itself is designed with unofficial “language layers”. This
allows Rascal developers to start with just the core language features, adding more
advanced features as they become more comfortable with the language. This language
core contains basic data-types (booleans, integers, reals, source locations, date-time,
lists, sets, tuples, maps, relations), structured control flow (if, while, switch, for), and
exception handling (try, catch). The syntax of these constructs is designed to be familiar
to programmers: for instance, if statements and try/catch blocks look like those found
in C and Java, respectively. All data in Rascal is immutable (i.e., no references are
ever created or taken), and all code is statically typed. At this level, Rascal looks like a
standard general purpose programming language with immutable data structures.

Rascal’s type system is organized as a lattice, with bottom (void) and top (value)
elements. The Rascal node type is the parent of all user-defined datatypes, including
the types of concrete syntax elements (Stmt, Expr, etc). Numeric types also have a
parent type, num, but are not themselves in a subtype relation: i.e., real is not a parent
of int. The basic types available in Rascal, including examples, are shown in Table I]

Beyond the type system and the language core, Rascal also includes a number of more
advanced features. These features can be progressively added to create more complex
programs, and are needed in Rascal to enable the full range of meta-programming
capabilities. These more advanced features include:

— Algebraic data type definitions, with optional type parameters, allow the user to
define new data types for use in the analysis. These data types are similar to sum
types in functional languages like ML or (possibly parameterized) sort and operator
definitions in algebraic systems like Maude.



Type Example literal

bool true, false

int 1,0, -1, 123456789

real 1.0, 1.0232¢20, -25.5

rat 1r4, 2217, -31r8

str ”abc”, “first\nnext”

loc |file:///etc/passwd|

datetime $2012-05-08T22:09:04.120+0200
tuple[t1,...,tn]  [(1,2), ("john”, 43, true)

list[#] [1, (11, [1,2,3], [true, 2, abc”’]

set[t] {}.{1,2,3,5,7}, {"john”, 4.0}

rellts, ..., tn] {(1,2),(2,3), (1,3) 1. {(1, 10, 100Y, (2, 20, 200) }
maplt, u] (), (1 : true, 2 : true), (6 : {1,2,3,6},7:{1,7})
node f, add(x, y), g("abc”, [2, 3, 4])

Table 1. Basic Rascal Types.

— A built-in grammar formalism allows the definition of context-free grammars. These
grammars are used to generate a scannerless generalized parser, which allows for
modular syntax definitions (i.e., unions of defined grammars) and the parsing of
programs in real programming languages. The syntax formalism is EBNF-like and
includes disambiguation facilities, such as the ability to indicate associativity and
precedence, add follow restrictions, and even provide arbitrary code to disallow
specific parses.

— Pattern matching is provided over all Rascal data types: matches can be performed
against numbers, strings, nodes, etc. A number of advanced pattern matching oper-
ators, such as deep match (/, matching values nested at an arbitrary depth inside
other values), negative match (!), set matching, and list matching are also provided.
Given the importance of concrete syntax for some meta-programming tasks, it is
also possible to match against concrete syntax fragments, e.g., matching a while
loop and binding variables to syntax fragments representing the loop condition and
the loop body.

— Additionally, pattern matching is used in the formal parameters of functions, allow-
ing function dispatch to be based on the pattern matching mechanism. This provides
for more extensible code, since new constructors of a user-defined datatype can be
handled by using new variants of an existing function, instead of requiring a single
function with a large switch/case statement. As an equivalent to the switch/case
default case, a default function provides the default behavior for the function
when none of the other cases match.

— In cases where there are multiple matches for a pattern, backtracking happens from
right to left in a pattern, enforcing lexical scope (names bind starting at the left, and
can be used in the pattern to the right of the binding site) and providing a natural
order on matches. A successful match can be explicitly discarded by the user with
the fail keyword.



— List, set, and map comprehensions, in combination with pattern matching and other
Rascal expressions, allow new lists, sets, and maps to be constructed based on
complex conditions. For instance, one could use a deep match to find all while loops
in a set of program files that contain a condition with a less than comparison. Also
provided is the <— element generation operator, which can enumerate the elements
of all container data-types, e.g. lists, sets, maps, and trees, and can be used inside
comprehensions and in for loops.

— String templates with margins and an auto-indent feature provide a straightforward
way to generate formatted code in multi-line source code templates.

— visit statements, with a syntax similar to that of switch statements, perform
structure-shy traversals of Rascal data types, allowing one to match only those cases
of interest. Visit cases can execute arbitrary code, for instance to keep track of
statistics or analysis information, or can directly replace the matched node with one
of the same type. Visits are parameterized by a traversal strategy (e.g., top-down) to
allow different traversal orders.

— solve statements allow fixed-point computations to be expressed directly as a
language construct. The statement continues to iterate as long as the result of the
condition expression continues to change.

A number of Rascal features focus on the safety and modularity of Rascal

code. While local variable types can be inferred, parameter and return types in
functions must be provided. This allows better error messages to be generated,
since errors detected by the inferencer can be localized within a function, and also
provides documentation (through type annotations) on function signatures. Also,
the only casting mechanism is pattern matching, which prevents the problems with
casts found in C (lack of safety) and Java (runtime casting exceptions). Finally,
the use of persistent data structures eliminates a number of standard problems with
using references which can leak out of the current scope or be captured by other variables.

Example: As a simple example, imagine that we want to work with the Peano represen-
tation of natural numbers. In Maude, these could be defined as follows:

fmod PEANO is
sort Nat
op z : —> Nat [ctor]
op s : Nat -> Nat [ctor]

vars N M : Nat

op plus : Nat Nat -> Nat
eq plus(s(N),M) = s(plus(N,M))
eq plus(z,M) = M

endfm



In Rascal, this same functionality would be defined as follows:

module Nat

data Nat = z () | s(Nat);
Nat plus (s (Nat n), Nat m) = s(plus(n,m));
Nat plus(z (), Nat m) = m;

Function plus could also be defined using a switch/case statement, as follows:

Nat plussc(Nat n, Nat m) {
switch (n) {
case s(j) : return s(plussc(j,m)) ;
case z () : return m;

}
}

As a more complex example, take the case where we have colored binary trees:
trees with an integer in the leaves, but with a color (given as a string) defined at each
composite node. This would be defined as follows:

data ColoredTree
= leaf (int n)
| composite (str color, ColoredTree left, ColoredTree right);

Suppose we want to analyze a ColoredTree, computing how often each color appears
at each node. The Rascal code is shown in Listing In this code, we use a map, held in
a local variable counts with inferred type map [str, int], to maintain the counts.
A visit statement is used to traverse the binary tree, matching only the composite nodes,
and binding the color stored in the node to the string variable color. The statement
counts[color]?0 += 1 thenincrements the current frequency count for the given
color if it exists, or it initializes this count to O first and then increments, assigning the
result back into the map entry for the color.

Listing 1 Counting frequencies of colors in a ColoredTree.

public map[str, int] colorDistribution (ColoredTree t) {

counts = ();
visit (t) {
case composite(str color, _, _): counts[color] ? 0 += 1;

return counts;

3 Scenarios for Program Analysis in Rascal

Scenarios for program analysis using Rascal can be viewed as a spectrum: at one end,
Rascal acts just as a coordination language, with all the analysis work done using external
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Fig. 2. Integrating Rascal and K.

tools; at the other, all work needed for the analysis, from parsing, through all the analysis
tasks, to the display of the results, is done within Rascal. Many solutions are somewhere
in between, with Rascal providing significant functionality while also interacting with
existing tools. This section presents three examples exemplifying these alternatives.

3.1 Integrating Rascal with RLS-Based Analysis Tools

One approach to program analysis in Rascal, near the “coordination language” end of
the spectrum, is to use a program analysis tool based on rewriting logic semantics (RLS)
and Maude while leveraging the support for parsing and IDE integration provided by
Rascal. This is supported in Rascal through the RLSRunner library [22].

RLSRunner provides components in both Rascal and Maude for linking Rascal
language definitions with RLS analysis semantics. In Rascal, functions and data types
are provided both to perform the analysis in Maude using the analysis semantics and to
process the results to yield information about the error and warning messages to display
in Eclipse. In Maude, sorts and operations are defined to model and use Rascal source
locations, allowing the locations of errors to be tracked by the analysis and reported
accurately to the user in Eclipse. These locations are added to an analysis semantics by
extending abstract syntax sorts with new operations to represent located versions of terms,
with additional equations provided to keep track of the locations in the configuration and
to give back the original (unlocated) terms.

Figure 2] provides an overview of the RLSRunner process. The two initial inputs are a
grammar for the language being analyzed, created using the Rascal grammar formalism,
and a source program. The grammar is processed using the Rascal parser generator,
generating a parser for the language under analysis. This parser is then used to parse
the source program, as well as to provide features used by the Eclipse-based program
user interface such as code folding, code outlining, etc. Using the parse tree emitted
by the parser, a Rascal program dubbed the “Maude-ifier” is then run. In conjunction
with the analysis task generator, this generates individual Maude terms from the parsed
program, with one term per analysis task — in some cases a task represents the entire
program, while in others tasks may be generated for smaller units, such as for individual
functions. Each analysis task is then evaluated in the analysis semantics, yielding the
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1 function $int main{void) -
begin
var $int x; var $int y;
var $bool b;

6 x i= 3; vy := 4; b := true;

X I= X + ¥;

[x] ®oi= ¥ 4 b =
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Q11 if x then write vy; else write b; fi =

3 Type failure, expression x should have type $bool, but has type Sint.

14 en

Fig. 3. Type Errors in SILF Programs shown in Rascal’s Eclipse-based IDE.

analysis results, which are processed by the result processor to yield analysis information
shown to the user in the IDE (e.g., error messages).

An example of the result of this process is shown in Figure 3] which shows type
errors identified in a SILF [20] program. The type errors are identified using the types
policy in the SILF Policy Framework [24], a rewriting logic semantics-based framework
for defining program analyses. The SILF units policy generates similar messages, but
based instead on annotations provided for units of measurement.

3.2 Refactoring Analysis with the Eclipse JDT

As an experiment in measuring the maintainability of large software systems, we de-
cided to investigate the difference in maintenance complexity for an interpreter written
using either the Visitor [[17, page 331] or the Interpreter [[17, page 243] design patterns.
We did this by creating a refactoring [38/37l16], dubbed V2I [23]], which transforms
an interpreter written using the Visitor pattern into one written using the Interpreter
pattern, holding all else constant. We then measured the difficulty of performing various
maintenance scenarios on the two systems [21]].

As part of the work in developing V2I, we had to develop an analysis that would
identify the code to be refactored. Normally, this would require creating a grammar for
Java, parsing the Java code used in the interpreter, and performing analyses to bind name
and type declaration information to entities in the code (while also taking account of
information provided by external libraries, which could be in binary form), all before
developing the analysis needed to perform the refactoring. Instead of doing this in Rascal,
we opted to instead reuse the information computed by the Eclipse Java Development
Tools (JDT), which computes all of these facts as part of its IDE support for Java
development. These facts are extracted from the JDT using the Rascal JDT library, which
communicates with Eclipse to build Rascal representations of a number of Java program
facts. Some of the facts used by the V2I analysis are shown in Table [2] with both entities
(types, classes, fields, methods) and relationships between entities (the remaining four
items) shown.

Using these entities, the analysis performs a number of computations to find all
methods that must be refactored. This is done by computing a number of intermediary
relations — for instance, from visitor interfaces to implementing classes — with the final



Extracted Fact Description

types classes, interfaces, enums

classes classes

fields fields

methods methods

modifiers modifiers on definitions (e.g., public, final)
implements interface X implementer

extends class or interface x extender
declaredMethods |[class or interface X method declaration

Table 2. Rascal JDT Interface: Extracted Entities and Relationships.

relation containing all identified methods, the method locations, and the method source
code. Additional relations indicate any dependencies of the refactored methods that must
also be modified. For example, in cases where method code is relocated to a different
class, uses of private fields in this code are changed first to uses of public getter and
setter methods. As in the prior example, Rascal acts partly as a coordination language,
but here also performs all the V2I-specific analysis using Rascal code.

3.3 Type-Checking Rascal in Rascal

The Rascal type checker (referred to hereafter as the RTC for conciseness) enforces the
static typing rules of the Rascal language. It is fully implemented in Rascal and uses no
external tools.

The parsing of Rascal code precedes RTC, naturally. Rascal includes a syntax defini-
tion formalism which is bootstrapped, and supports embedded concrete syntax fragments.
When parsing Rascal modules with concrete syntax, such as in the implementation of
RTC, an automatically generated parser for Rascal embedded in Rascal is used. The input
for RTC are parse trees of any Rascal modules, which are also processed by similarly
generated parsers.

Several key principles are used in the RTC:

— Checking occurs at the level of individual modules. Imported modules are assumed to
be correct, and supply a module signature with type information for all declarations.

— Checking with a module is performed by checking each function individually.
Function signatures must be given explicitly for each declared function, and are not
inferred.

— Function bodies are checked by statically evaluating the code in the function body
using a recursive interpreter which implements the type semantics. Values in the
interpreter represent types and abstract entities, such as variables, functions, etc.

— Local inference is handled by checking for stabilization across multiple (static)
evaluations of iterating constructs. For instance, loops that assign new values to
variables are evaluated twice. Types that fail to stabilize are assumed to be value,
the top of the type lattice.

The result of running the checker is an assignment of types (including error types)
to all names and expressions in a Rascal module. This information is then used by



the Rascal IDE to provide type documentation (visible by hovering over a name or
expression in the IDE), type error annotations, and documentation links allowing the
user to jump to the definition of a name, including definitions of variables, constructors,
functions, and user-defined data types.

3.4 Discussion

These three tools exemplify the diversity of solution strategies when using Rascal. In
some cases we use external tools, while in others we do not. The RTC is self-contained
and bootstrapped, the refactoring emphasizes reuse of the Eclipse JDT and the SILF
checker reuses a version of K in Maude. These examples also use different intermediate
data-structures and different types of analysis algorithms.

The design of Rascal is intended to leave many choices to the meta programmer.
It provides a kaleidoscopic set of solution scenarios. Users are not forced to use the
language for all components, and are actively helped by the system to connect to other
systems. This is one reason Rascal has been designed as a programming language rather
than as a specification formalism [45].

4 Analyzing PHP

In this section we describe analyses of PHP code using Rascal. We also describe the
same analyses as they could be implemented in Maude. Our goal is to give the reader
insight into how these two systems compare in terms of functionality and style.

PHP[His a dynamically-typed server-side scripting language. According to the TITOBE
Indexﬂ, as of May 2012 PHP is the 6th most popular programming language. PHPﬂ
is an object-oriented language with an imperative core. The object system is based
around a single-inheritance model with multiple inheritance of interfaces. The visibility
mechanism uses the familiar keywords public, private, and protected, and
works in conjunction with the inheritance mechanism (e.g., protected methods are visible
in subclasses). As in C++, namespaces provide a mechanism for grouping user-defined
names. Newer features include closures and traits [44]]. PHP also includes extensive
libraries, including standard functions for working with arrays, manipulating strings,
and interacting with databases, and a number of third-party application frameworks and
utility libraries are available.

We are interested in analyzing PHP code for several reasons. Since PHP has a weak
typing model (“duck typing”) it allows many common errors to go undetected. One
question this raises is: even with this weak typing model, how many of these errors
can be detected, and with what accuracy? Another goal of this research is to detect
possible errors caused by changes in the PHP semantics, especially in cases where
syntactically updated PHP4 code is running on a PHPS engine. Tools which analyze
PHP and detect such problems are typically in the application domain of Rascal, as well
as in the application domain of Maude.

"mttp://www.php.net
2 http://www.tiobe.com/index.php/content/paperinfo/tpci/
3 As of May 2012, the current version is 5.4.3.
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First we describe some of the challenges, with possible solutions, in analyzing PHP.
These include resolving includes, alias analysis and type inference.

4.1 Analyzing Includes, Aliases and Types for PHP

As part of our work on creating analysis tools for PHP, we are creating two analyses
that will be used in many of the other tools: an alias analysis, and a type inferencer.
These both work on individual PHP scripts, which can include other scripts as well as
references to PHP library functions.

Includes The first challenge in our analysis is to actually get a script’s complete source.
Unlike in languages such as C, includes in PHP are resolved at runtime, with include
paths that can be based on arbitrary expressions. In a worst-case scenario, this means
that an include could refer to any other PHP file in the system. In practice, it is possible
in many cases to statically resolve the include path using a number of techniques
(constant propagation, algebraic simplification, path matching). Thus, for these analy-
ses we assume we have a “fully inlined” script in which all includes have been merged in.

Type Inference The type inferencer is based on the Cartesian product algorithm [1].
This algorithm assigns a set of types from the universe of all possible program types
(classes, interfaces, and built-in types) to the expressions and access paths (paths
made up of names, field accesses, and array element accesses) in the script. This
type assignment is initially seeded with those cases where an invariant type can be
determined. For instance, the expression new T always yields type {T}, and the literal
5 is always given type {int}. Using this seed, other types are derived using typing
rules. The algorithm gets its name through its treatment of method calls: given the type
sets assigned to the invocation target and the actual parameters, the Cartesian product
of these sets is formed. For each element of this Cartesian product, the proper method
(based on the target type) is selected, types are bound to the formal parameters, and the
method body is then typed. Overloaded expressions, such as the arithmetic expressions,
can be treated as special versions of methods and typed similarly.

Alias Analysis The alias analysis is based on an interprocedural alias analysis algorithm
that can handle function pointers, recursive calls, and references [25]]. The alias analysis
yields a relation between names at each program point, where the relation contains pairs
of names which are may-aliases (i.e., which may refer to the same memory location).
Aliases in PHP are created directly through reference assignments, the use of reference
arguments and reference returns in functions and methods, and potentially through the
use of the global statement. Aliases can also be created indirectly through the use of
variable-variables, where (for instance) the name of a variable to access is stored as a
string in another variable and “dereferenced” using a double dollar sign. Finally, indirect
aliases are created through object references, which act as pointers to the referenced
objects. Several of these cases are shown in Figure ]

In order to get the correct results, the analyses need to be run in tandem, first running
one, then the other, until a fixpoint is reached. This is because each analysis provides new



$g = 10;

| function f1l(&$pl) { S$pl++; } // S$pl is a reference argument
| function &f2() { global $g; return $g; } // reference return

class Cl1 { public $vl = 5; }

Sa = 3;
7| f1(Sa); // $a is now 4, S$pl aliases S$a in f1l

$b =& f2(); // $b now aliases $g

Sc = new C1();

el $c; // $d and $c are not aliases, $c->vl1 and $d->vl are
$d =& Sc; // $d and $c now are aliases

2 Svv = "a";
| SSvv = 6; // $S$vv aliases Sa

Fig. 4. Creating Aliases in PHP.

information that can be used in the other. For instance, discovering that two names are
aliased can add to the set of types assigned to a name, which could then add additional
elements to the Cartesian products calculated for method calls. Also, expanding the set
of types of an invocation target can expand the set of methods invoked at a specific call
site, which can then lead to the generation of more alias pairs. While convergence of this
process can be slow, the type inference and alias analysis algorithms work over finite
sets of values and are monotonic, guaranteeing that they will terminate.

4.2 Required Analysis Tasks

A number of standard tasks are required for creating any PHP analysis. We discuss four
of these below: parsing, maintaining internal representations needed in the analysis,
writing the rules for the analysis, and reporting the analysis results. After this we show
how we implemented these four tasks in Rascal and then we sketch out how we would
implement them in Maude.

Parsing PHP Scripts The purpose of executing a server-side PHP script (the standard
mode of execution) is to generate an HTML page to send to a client. To make this
easier for developers, PHP scripts are often a mixture of PHP code and fragments of
HTML. Because of this, the parser needs to be capable of parsing intermingled PHP
code and HTML markup. Whether to keep the HTML fragments is a decision based
on the analysis — some analyses try to ensure that sensible HTML code is generated,
while for other analyses it may be possible to discard the HTML. Since the analysis also
needs to be able to handle includes properly (discussed above), parsing and later steps
may also work in tandem, with new scripts parsed as new information on includes is
discovered. The end result of parsing should be an internal representation of the parsed
script(s) that can be used in the analysis.

Developing Internal Representations Each analysis uses a (potentially large) number of
intermediate representations. Some of these can be shared between different analyses,




such as the representation of the script to analyze, while some are unique to each analysis.
For the analyses here, this would include the representations of the results: sets of types
assigned to expressions and access paths for the type inference analysis, and sets of
alias pairs assigned to program points for the alias analysis. This would also include the
intermediate representations, used during computation of the results, but often containing
information that is not needed once the analysis is complete.

Writing Analysis Rules The analysis rules interact with the internal program representa-
tion and the various supporting data structures to analyze the various language constructs,
computing (for instance) the inferred type of a concatenation expression, the aliases
created in a reference assignment, or the set of all alias pairs at a given program point.

Reporting Analysis Results The analysis needs to provide a way to report the final
analysis results. Based on the needs of the analysis clients, results could be provided
using internal data structures (e.g., sets of alias pairs associated with a specific program
point), external messages (visual indicators to show which types have been inferred for
an expression), or some combination of the two.

4.3 Analyzing PHP in Rascal

Here we describe, in terms of the analysis tasks listed above, the current implementation
of the PHP type and alias analyses we have developed in Rascal.

Parsing PHP Scripts We are currently parsing PHP using a fork of an open-source
PHP parselﬂ Our parsing script pretty-prints the parse tree as a term conforming to the
AST representation we have in Rascal for PHP, with location information provided as
Rascal annotations. This PHP script is called directly from Rascal using a library for
interacting with the command shell. Parsing the abstract syntax tree representation to
Rascal’s internal algebraic data-types is also a standard library function.

We are also converting an SDF parser for PHP, written as part of the PHP-front
projecﬂ which will allow us to parse PHP code directly in Rascal. This will also create
terms conforming to the Rascal PHP AST definition so we will not have to change
existing code.

Developing Internal Representations The PHP AST is defined as a mutually recursive
collection of Rascal datatype declarations, with base types and collection types used
to represent strings, integers, lists of parameters, etc. The internal configuration of the
analysis is represented as an element of a Rascal algebraic datatype, with different fields
holding different pieces of analysis information. Relations are used to represent interme-
diate results (e.g., the relation between an access path and possible types); final results
are often instead given in maps, since these provide for quicker lookup performance, and
can be stored directly on the abstract syntax tree using Rascal annotations.

‘https://github.com/nikic/PHP-Parser/
5 http://www.program-transformation.org/PHP/PhpFront
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Writing Analysis Rules Analysis rules are written as Rascal functions using a combina-
tion of switch statements and parameter-based dispatch. Each function takes at least the
current configuration and a piece of abstract syntax, returning the updated configuration
and (often) a partial analysis result, such as the type set computed for an expression.
The functions that use dynamic dispatch look like rewrite rules from a certain
perspective, while the code that uses switch has a more procedural style. For example:

Infer plus(Cfg c, int (), int()) = <c, {int () }>;
Infer plus(Cfg ¢, int(), float()) { return <c, {float()}>; }
Infer plus(Cfg ¢, int (), str()) = <warn(c, msg),{int(),float()}>;
default Infer plus(Cfg ¢, Type 1, Type r)

= <err(c,...),{int (), float () }>

This code defines the plus function in four independent declarations. Each definition is
overloaded —mutually exclusively— using pattern matching. The second definition is
written using a block of statements to demonstrate the two different styles of function
definition. The last definition has the default keyword, which indicates that it will be
tried only after the others have failed to match the parameters passed into the call. The
definitions use different kinds of data-types, namely algebraic data types (the updated
configuration returned from a call to warn (c, msg)), tuples (<a, b>), and sets (using
the { . . . } brackets).
The current implementation of the analysis rules has several limitations:

— The handling of “variable” constructs (variable-variables, variable functions, ac-
cesses to variable properties, etc) is currently too conservative, weakening the
precision of the analysis. For instance, assigning a new type to a variable accessed
through a variable-variable assigns this type to all variables currently in scope.

— The analysis can be overwhelmed as PHP scripts get larger, with both memory usage
and processor usage growing to make the analysis infeasible. The imprecision in
the handling of the variable constructs makes this worse, since this dramatically
increases the size and number of type sets and alias pairs.

— Since the initial focus was on checking for upgrade problems between PHP4 and
PHPS, some PHPS features are not yet analyzed. This includes interfaces, traits,
closures, and gotos, although some similar constructs (break and continue
statements, essentially structured gotos) are currently supported.

Because of these limitations, we are currently reimplementing the analyses with a
focus on performance. We are also working towards supporting the newer features of
PHP that we do not yet support.

Reporting Analysis Results As mentioned above, analysis results are recorded in annota-
tions on the AST, and are also given back as part of the final configuration. The current
model of sharing the results is to use annotations, since this allows arbitrary information
to be added to each node in the AST.

We do not yet show types for PHP expressions and access paths in a graphical
fashion (e.g., as hovers within the Eclipse IDE), but that would be the next step if
we were constructing an IDE for PHP. To display errors and warnings, the easiest



way is to register them via the Rascal standard library module that gives access to the
Eclipse Problem View. A typical low-brow way of producing readable results from the
annotated AST would be to use Rascal’s string templates to produce a readable list of
error messages and warnings.

4.4 Analyzing PHP in Maude

Here we describe what would be needed to build rewriting logic semantics versions of
the type and alias analyses described above. We assume that these analyses would be
run using Maude.

Parsing PHP Scripts Since the Maude parser is not capable of parsing normal PHP
scripts, we instead would need to use an external parser. We may use the same external
parser that Rascal used before: the parser would generate terms, in prefix form, using
an algebraic signature defined to represent the abstract syntax of PHP. Some of these
terms would be “located”, as described in Section E] with the RLSRunner tool, allowing
source location information to be reflected in any generated error messages. Connecting
the PHP front-end with Maude is done most straightforwardly by creating a shell script
wrapping a call to the parser and sending the result over a pipe to Maude.

Developing Internal Representations Using Maude, all internal representations are based
around terms formed over an algebraic signature. The abstract syntax for PHP would
most likely be given in mixfix, allowing rulesﬂ to be written over an abstract syntax that
looks similar to the concrete syntax. Intermediate results and the final results would
also be defined as terms, representing (for instance) sets of types or maps from program
points to alias pairs.

In a computation-based rewriting logic semantics [35], the current configuration —
i.e., the current state of the analysis, including all intermediate results — would also be
defined algebraically, as a multiset of nested cells. These cells can contain information
such as the current computation (i.e., the remaining steps of the analysis), the current map
of program names to values or storage locations, or the set of available class definitions.

Writing Analysis Rules Using a computation-based RLS, analysis rules are written as
transformations of the configuration, generally involving the computation. Most language
features are handled by several rules: one rule breaks apart the language construct to
evaluate its pieces, while the others use the evaluation results to compute a result for the
entire construct. As an example, a type inferencer may include rules such as:

eq k(exp(E + E") —> K) = k(exp(E,E’") —> + —> K)

eq k(val(int,int) -> + -> K) = k(val(int) -> K)

eq k(val(int, float) -> + -> K) = k(val(float) -> K)

eq k(val(int,str)-> + -> K) = k(warn(...)—-> val(int float)-> K)

The first rule indicates that we need to evaluate expressions E and E’/ before we can
compute the result of E + E’; E and E’ are put at the front of the computation (k) to

® We speak here of rules in the generic sense, including both equations and rewriting logic rules.



indicate they should be evaluated next, while + is put in the computation as a marker
to indicate the operation being performed. The second, third, and fourth rules then give
several possible behaviors, based on the results of evaluating the operands. The second
rule says that, if both operands are of type int, so is the result. The third rule says that,
if the first is int and the second is f1oat, the overall result is £1oat. Finally, the
last rule shown says that, if we are trying to add an int to a string (as occurs in
examples in Figure d)), we should issue a warning (the text is elided as . . .), because
this may not be the operation we were intending to perform. We should also then return
a set (represented by juxtaposition) containing both int and float, since, based on
the contents of the string, both are possible result types.

Reporting Analysis Results There are several options for reporting the results of the
analysis. The most basic is to just examine the final configuration, which will have the
type assignments, alias pairs, etc. inside it. We could also use the semantics to perform a
final “pretty printing” step to provide the results in string form. Other options include
the use of external tools to view the results, such as was done with the RLSRunner
tool in Section [3] Finally, we could return just a term with the results, not the entire
configuration. This term could be used as input into another RLS-based tool which
needed the computed results.

5 Related Work

In earlier work [45] we discussed the evolution of Rascal from its origins in the
ASF+SDF and RSCRIPT systems. Some of the material in this paper, especially in
Section 2} is based on this work, including the Rascal examples shown for illustration.
Below we list other related work for Rascal, for PHP program analysis, and for analysis
using rewriting logic.

Rascal: The design of Rascal is based on inspiration from many earlier languages and
systems. The syntax features (grammar definition and parsing) are directly based on
SDF [18], but the notation has changed and the expressivity has been increased. The
features related to analysis are mostly based on relational calculus, relational algebra
and logic programming systems such as Crocopat [5], Grok [26] and RSCRIPT [31]],
with some influence from CodeSurfer [2]. Rascal has strongly simplified backtracking
and fixed point computation features reminiscent of constraint programming and logic
programming systems like Moreau’s Choice Point Library[36], Prolog and Datalog [8].
Rascal’s program transformation and manipulation features are most directly inspired
by term rewriting/functional languages such as ASF+SDF [48]], Stratego [[6], TOM [3]],
and TXL [12]. The ATerm library [47] inspired Rascal’s immutable values, while the
ANTLR tool-set [39], Eclipse IMP [9] and TOM [3]] have been an inspiration because of
their integration with mainstream programming environments.

PHP Analysis: Most research on PHP analysis has focused on detecting security
vulnerabilities, including SQL injection attacks, cross-site scripting, and the use of
tainted data (data that comes from outside the program, such as from a user form, and



that is not checked before being used in file writes, database queries, etc). This is
the main focus of both the WebSSARI [27.28]] and the Pixy [30129] systems and of a
number of individual analyses [41]]. The PHP-saﬂ and PHP-tool projects extend this
security validation research by also adding support for additional analyses, including
detecting a variety of common bug patterns (e.g., assigning the result of a function
call where the body of the called function does not include a return statement), and by
finding some PHP4 to PHPS migration errors (e.g., functions with names that match new
PHPS5 functions). Another tool, the prototype PHP Validator [7], uses a type inferencer
as part of a number of possible analyses. For instance, one example given is an analysis
to detect the accidental use of + instead of . in string concatenation. However, not all
of the analyses listed are actually implemented, and the PHP Validator tool does not
support the object-oriented features of PHP.

Analysis in Rewriting Logic: Rewriting logic has been used extensively for program
analysis. The work most similar to that discussed here is the work on policy frameworks
for C [[19] and SILF [24]. This work, in turn, was based on earlier work on detecting
units of measurement errors in C [42]] and BC [10] programs. Taking another approach,
JavaFAN [15]] uses Maude’s state space search and LTL model checking facilities [13] to
find program errors, including possible deadlocks in concurrent programs. A semantics
of C [14]], developed using K [43], uses standard Maude rewriting to run C programs and
look for undefined behavior; state space search and model checking are used to explore
the nondeterminism introduced by constructs with undefined evaluation orders.

6 Summary and discussion

We have shown a range of scenarios for building new software analysis tools in Rascal:
from a purely Rascal-based solution to solutions that make use of external tools. This has
been illustrated through a number of examples, including one showing the integration of
Rascal with an existing rewriting logic-based analysis. The most substantial example
has been the analysis of PHP code, in which we outlined the necessary steps for such an
analysis, their implementation in Rascal, and a speculative implementation in Maude.
We now summarize our observations and conclusions.

6.1 Observations regarding Rascal

Rascal is a programming language that provides all the features and libraries needed
to create end-to-end software analysis tools. Although it has its roots in algebraic
specification [4] and can be used to write programs that strictly follow the rewriting
paradigm, it shows its major strengths in developing Rascal-based or hybrid solutions
that cooperate with an IDE or with external tools.

"http://www.program-transformation.orqg/PHP/PhpSat
8 http://www.program-transformation.org/PHP/PhpTools
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Aspect [ Maude Rascal

Computational Model Simpler More complex
Semantics Formal Informal
Extensibility (language level) |Yes No

Integration external tools Only sockets, pipes Java & Eclipse
Grammar definition & parsing|Limited Fully integrated
Data types Limited Rich

Libraries Limited Rich

Maturity Mature framework Young language
Efficiency Optimized Not yet optimized

Table 3. Comparison of Maude and Rascal.

6.2 Comparing Maude and Rascal: General Observations

Our global experience with the two languages makes clear that both Maude and Rascal
have competing benefits and shortcomings, which we summarize in Table 3]

Maude is closer to semantic foundations, with a formal semantics and a rewriting-
based computational model. This makes the analysis itself amenable to formal techniques
and provides a simpler conceptual core. Maude provides flexible extensibility mecha-
nisms and (by treating computations as first class entities) powerful ways to manipulate
partial computations. This can be especially useful when analyzing features that “jump”,
such as gotos, exceptions, and loop break and continue statements. Maude is a mature
framework, with an optimized implementation, but it can still be challenging to write and
maintain large specifications. Debugging tools for Maude [40] have made great progress
but still have trouble scaling to large specifications, which often leads to debugging by
reading through rewriting traces.

Rascal is more pragmatic, with a more complex, unformalized computational model.
The Rascal language definition framework provides very strong integrated grammar
definition and parsing facilities, rich data types that provide element generation, and
traversal and pattern matching constructs. For integration, Rascal also provides rich
libraries (e.g., supporting visualization, statistics, and data formats like HTML, XML,
CSV, and SVN) and seamless extension and integration facilities with Java, Eclipse
and external tools. Since Rascal is a young language, its design is not yet completely
finalized and its implementation is not yet optimized, leading to potential performance
problems when tackling large analysis problems.

6.3 Comparing Maude and Rascal: Observations for PHP Analysis

More specific differences can be identified on the basis of the PHP analysis.

Parsing PHP Scripts Here Rascal is clearly superior since both a completely Rascal-
based parser and an externally implemented parser can be used. Also, more control is
possible over the shape of the resulting trees.

Developing Internal Representations Rascal provides many more constructs, like maps,
trees, and n-ary tuples and relations, “out of the box”, making it easier to quickly develop
the needed internal representations and to treat them as black boxes.



Writing Analysis Rules One perspective is that the same term and rule-based style can
be used for writing specifications in both approaches. Specifications written in this style
(this would be a functional style of programming in Rascal) are more amenable to formal
analysis. This could be useful if, for instance, one wanted to prove that the type inference
algorithm does not infer incorrect types. However, given the informal nature of PHP, it is
not clear how possible it would be to conduct such proofs. Another perspective is that,
if this level of rigor isn’t needed, Rascal provides a number of programming language
features that enable a richer variety of programming styles. Jumps can be modeled
in Maude using K-style computations and in Rascal using either edges in graph-like
program representations or using higher-order functions.

Reporting Analysis Results Maude and Rascal can both return an annotated term or
string representing the analysis results. Rascal also includes facilities for error reporting
and IDE integration built directly into the language.

6.4 Final Observations

We can draw several conclusions from this comparison. The bottom-line is that Maude
is focused on formal specification while Rascal is focused on programming.

Maude is a better choice when the formal properties of the implemented tools
are also important. Maude may be a better choice when a language has a number of
jump-like constructs; these can be handled in Rascal, but require making the control
context more explicit. Rascal is a better choice for end to end solutions, for instance
real language environments, where parsing, integration with IDEs, and integration with
external tools becomes important. With more standard control flow mechanisms, richer
built-in data types, and a provided unit test definition and execution mechanism, large
Rascal programs should also be easier to debug than large rewriting logic specifications
for the same analysis. Finally, as shown with the RLSRunner tool, in some cases it
may make sense to write analyses partly in Rascal and partly in Maude, such as when
an analysis semantics already exists, or can be derived as an extension of an existing
semantics, and can then be used as part of a Rascal-developed language environment.
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